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ABSTRACT

Gaussian graphical models have emerged as a powerful tool
for modeling and understanding multivariate data across var-
ious domains. In this paper, we consider the problem of
change localization in the Gaussian graphical model, where
it is known that a change has occurred in the underlying
graph structure, and the goal is to localize the change rapidly.
This paradigm occurs in various applications, from cyber-
physical systems and biological networks to social networks
and epidemiology. We introduce a novel algorithm, dubbed
FOLk-DGM (Fast Online Localization in Dynamic Graphical
Models), that is both computationally efficient and performs
change localization with provably low latency (time elapsed
before the change is localized). We present the theoretical
properties of the algorithm and complement our theoretical
results with experimental results.

Index Terms— change localization, Gaussian graphical
models, sequential learning

1. INTRODUCTION

Gaussian graphical models (GGM) have emerged as a pow-
erful framework for capturing relationships and dependencies
among multivariate data. These models have found applica-
tions in diverse domains ranging from social networks and ge-
nomics to finance and cyber-physical systems. Consequently,
it is imperative to learn the structure of the graph that under-
lies the Gaussian graphical model. Unsurprisingly, learning
the structure of GGM has been extensively studied [1, 2].

In this paper, we consider an important generalization of
this problem where the underlying system is not static and
evolves over time. In particular, we consider the problem of
change localization, where we know a change has occurred in
the system, and our goal is to localize it in the graph swiftly.
This problem has received much less attention despite its
relevance to several real-world applications. Considering a
sprawling infrastructure network where a fault is detected by
installed sensors, one needs to rapidly locate the source of the
fault to maintain the operational integrity of the system. In
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epidemiology, the sudden contagion spread may be observed
(e.g., via wastewater analysis [3]); however, identifying the
portion of the network that gave rise to the contagion needs to
be identified rapidly. Similarly, disruptions in global supply
chains may be evident, but pinpointing the network location
of such disruptions is key to swift resolution. Addressing this
challenge, this paper makes the following contributions:

1. A Novel Online Change Localization Algorithm.
Our algorithm, dubbed FOLk-DGM (Fast Online Lo-
calization in Dynamic Graphical Models) performs
change localization in an online setting and is therefore
naturally able to handle data in a streaming fashion
without storing vast amounts of sensor data. This re-
sults in significant memory efficiency.

2. Low Latency. Our algorithm also enjoys provably low
latency. In particular, we show that FOLk-DGM prov-
ably localizes changes and recovers the new graph in
time that scales as Õ(∆4), where ∆ captures the mag-
nitude of the change and Õ suppresses log factors. ∆ is
typically small if the change is not systemic in the un-
derlying network. This is in contrast with the streaming
algorithms of [4, 5] whose latency depends on the ab-
solute value of the new edge weights.

3. Computational Efficiency. Our algorithm is also
naturally highly computationally efficient. The online
change detection and estimation algorithms proposed
in [6, 7] can be naturally adapted to the change lo-
calization setting; however, they have a computational
complexity of O(p3). Our algorithm enjoys a compu-
tational complexity of Õ(p2∆4), where ∆ and Õ are as
above. So, when the change is abrupt and not systemic,
our algorithm localizes the changes (and learns the new
graph) computationally efficiently.

2. RELATED WORK

Existing work associated with dynamic graphical models
roughly falls into two classes: one is based on time-varying
graphical models, and the other is based on piece-wise con-
stant graphical models. Researchers have developed algo-
rithms for both offline and online data for both classes. In a



time-varying graphical model, the graph topology gradually
changes over time; the curious reader may read [8, 9, 10] for
different algorithms developed for learning the structure of
such time-varying graphical models. In this paper, we con-
sider abrupt changes, as is typical in modeling anomalous or
phase-change events in networked systems. To that end, [11]
considered covariance selection models for multivariate time
series where (at most one edge) changes in the dependence
structure occur at random times, and [12] also considered
learning time-indexed graphs for directed graph. Both these
papers require the full dataset as input. In a different line of
work, algorithms for directly learning the differential graph
were proposed for undirected graphical models in the offline
setting (see, e.g., [13, 14, 15]). [16, 17, 18] proposed methods
for jointly learning multiple graphical models without con-
sidering the possibility of the existence of any change points.
The work most closely related to ours is [6, 7]. The algorithm
in [7] is based upon monitoring the conditional log-likelihood
of all nodes in the network. The algorithm proposed in [6]
is an approximate majorize-minimize algorithm for fitting
piecewise constant high-dimensional models. Both of these
works are focused on sequential change detection rather than
localization. Further, it is important to note that the localiza-
tion step in [7] is a batch method, whereas the method we
propose is sequential. Finally, as previously mentioned, these
methods are computationally impractical due to their high
computational complexity.

3. NOTATION AND PRELIMINARIES

Let X = (X1, X2, . . . , Xp) ∈ Rp be a zero-mean Gaussian
random vector with a covariance matrix Σ ∈ Rp×p. Com-
pactly, X ∼ fX ≜ N (0,Σ), where 0 is the p-dimensional
vector of all zeros. Let G = ([p], E) be a graph on the ver-
tex set [p] ≜ {1, 2, . . . , p} representing the coordinates of X
with edge set E ⊂

(
[p]
2

)
. The distribution of X is said to be

Markov with respect to G if (Σ−1)ij = 0 for all {i, j} /∈ E.
K ≜ Σ−1 is called the precision matrix of X. Therefore, X
is Markov with respect to G only if for every pair i, j ∈ [p]
such that {i, j} /∈ E, we have that Kij = 0. Recall that since
X is Gaussian, Kij = 0 if and only if Xi and Xj are con-
ditionally independent given all the other coordinates of X.
We refer to the pair (G,N (0,Σ)) as a (Gaussian) graphical
model; we invite the interested reader to read [19] for a more
thorough exposition of graphical models. In what follows, we
write X\i to denote the sub-vector of X with i-th coordinate
removed.

The goal of the (static) structure learning problem is to re-
cover the structure of the graph G given samples from the dis-
tribution fX. That is, we would like to construct an estimate
Ê of the edge set E from samples. In this paper, we are inter-
ested in the setting where the underlying graph is allowed to
vary with time. That is, we will suppose that Gt = ([p], Et),
t ∈ [T ] is a sequence of graphs with a fixed node set [p] and T

denotes the total number of independent samples one has ac-
cess to from the system. Corresponding to each time t ∈ [T ],
we suppose that we have a covariance matrix Σt ∈ Rp×p and
that we have access to a sample Xt ∼ fX,t ≜ N (0,Σt).
It is standard to adopt (see [7, 6]) a piecewise constant
model for Σt (or equivalently Kt) to model abrupt changes
in the dependency structure of the underlying graph. That
is, we will suppose that there is a set of change points
Tc ≜ {tc0, tc1, t2c , . . .} ⊂ [T ] sorted in ascending order with
tc0 = 1, such that Σt =

∑|Tc|
j=1 Σ

(j)
1
(
tcj ≤ t < tcj+1

)
. In

the change localization problem, we suppose that we are
given access to the set of changepoints Tc, and our goal is
to (rapidly) learn the changed covariance matrices Σ(j) and
thereby localize where the change occurred. Notice that
this is different from the typical change detection problem,
where the goal is to detect when a change has occurred. It is
also different from the problem of model selection in time-
varying graphical models, where the graph is assumed to vary
smoothly. In order for our change localization procedure to
work, we need to make the following assumptions.

Assumption 3.1. We will suppose that there exists a known
∆ > 0 such that

max
j

∥∥∥K(j) −K(j−1)
∥∥∥
1,∞

≤ ∆.

That is the amount by which any one neighborhood in the
graph changes is bounded by some known parameter ∆.

Assumption 3.2. We will suppose that there is a t∗ > 0 such
that |tcj+1 − tcj | ≥ t∗.

Assumption 3.2 is common in change detection and esti-
mation literature [6, 7] and allows us not to miss any change
events. This can of course, be relaxed if one is allowed to
combine closely occurring changes.
Problem Setup. Let Tc be the set of given change points.
For each changepoint tci ∈ Tc, let ∆̂T i be the time elapsed
since tci before the algorithm correctly learns the changed
graph (and hence localizes the change point); we will take
∆̂T i = ∞ if the algorithm fails to learn the i-th change point.
For a change point localization algorithm, we define the la-
tency to be maxi ∆̂T i. The goal of (rapid) changepoint lo-
calization is to design an algorithm that, given any δ > 0,
terminates with low latency with probability at least 1− δ.

4. THE RAPID CHANGE LOCALIZATION
ALGORITHM

Before we present our algorithm, we will define some quan-
tities. We start with minimum normalized edge strength: κ =

min
(i,j)∈E

Kij√
Kii×Kjj

. This quantity appears in our theory as more

data is required (i.e., longer latency is needed) to learn weaker
edges. Next, we define an upper bound Kmax on the absolute



values of the entries of K, and an upper bound on the variance
of any marginal variable.

Kmax = max
(i,j)

|Kij | and σmax = max
i

Var[Xi]

Our algorithm generalizes [4, 5] and operates in p paral-
lel instances, one for each vertex (and is hence highly par-
allelizable). In order to understand the rationale behind our
proposed algorithm, we start by noting an important prop-
erty of multivariate Gaussians. For any i ∈ [p], the con-
ditional expectation of Xi given X\i satisfies E[Xi|X\i] =∑

j ̸=i
−Kij

Kii
Xj . Further, by the Gauss-Markov theorem [20],

we know that Xi conditioned on X\i is in-fact normally dis-
tributed and can be written as

Xi =
∑
j ̸=i

wjXj + ηi, (1)

where wj = −Kij/Kii and ηi ∼ N (0, 1/Kii). Further, we
know that ηi is independent of {Xj , j ̸= i}. That is, if the
graph G has a degree of d, then we know that Xi can be writ-
ten as a noisy linear combination of X\i with at most d non-
zero coefficients.

In an important paper [5], the authors make a similar ob-
servation for the Ising model and design a (static) graph learn-
ing algorithm that uses an adaptation of the Multiplicative
Weights Update (MWU) framework [21] to learn the coef-
ficients wj for each vertex i, and therefore the neighborhood
of the vertex i. The authors in [4] adapt this procedure to
the setting of Gaussian graphical models. In this paper, we
adapt this framework to perform rapid change localization in
a dynamic setting. Our theory (see Section 5) shows that the
algorithm proposed localizes the change with a lag that de-
pends on the magnitude (ℓ1 norm) of the change of a vector
in the precision matrix K and only mildly (polylogarithmi-
cally) on the number of variables p. If one simply applies the
algorithm from [4] to this setting, given that it is able to be run
online, one can only establish a lag guarantee that depends on
the ℓ1 norm of the new weight vector – a quantity that could
be significantly higher than the magnitude of the change vec-
tor. In fact, in our experiments (see 6), we show that this is
not simply a weakness in theory and that it appears in practice
as well.
Key Idea of the FOLk-DGM Algorithm. We present the
key idea of FOLk-DGM by fixing an arbitrary change point
in Tc. Now, without loss of generality, we suppose that we
are looking at the first change point tc1. Further, fix an arbi-
trary vertex i ∈ [p]. We suppose that w∗ is the true weight
vector corresponding to vertex i in the sense of (1) before the
change occurs. For the sake of clarity, we will suppose that
we know w∗. Indeed, our method (and theory) works if one
had to estimate w∗ and condition on this estimate being accu-
rate. We will suppose that w∗

1 is the (unknown) weight-vector
corresponding to vertex i post-change. One can localize the

change if one were to estimate w∗
1 (using MWU based algo-

rithm in [4]) accurately. Instead, our algorithm FOLk-DGM
will estimate the difference vector d∗1 = w∗ −w∗

1 accurately.
By our assumption, we know that ∥d∗1∥1 ≤ ∆. In design-
ing the algorithm, we will suppose that we know (an upper-
bound on) ∆. Now, building on the algorithmic framework
proposed in [4, 5], our algorithm operates in two phases for
all the change points. In the first phase, the algorithm learns
a difference vector for which the empirical loss is small and
returns the post-change weight vector. Then, similarly, in the
next phase, it learns the post-change weight vector for all the
vertices in parallel. The outer-most loop in Algorithm 2 ap-
plies the two former steps for all the change points in Tc.

Algorithm 1 ESTIMATING POST-CHANGE WEIGHT VECTOR
BY LEARNING THE DIFFERENCE VECTOR

1: Input: Parameter tuple (δ, σmax,∆); N = Ntr +
Nts normalized samples; Normalizing parameter Cn ≜√
2log( 2pNδ )σmax(2∆ + 1); Learning rate β; A change

point tcn; w∗
n ≜ true weight vector before tcn .

2: Output: Post-change weight vector ŵn+1.
3: Initialization: d0 = { 1

p ,
1
p , . . . ,

1
p} ∈ Rp.

4: for t = tcn + 1 to tcn +Ntr do
5: Compute d̃t = dt

∥dt∥1
and ∆× d̃t.

6: ℓt = (1/2)(1 + (∆d̃t · x̃t
−i − (x̃i

t −w∗
n · x̃t

−i))x̃
t
−i)

7: ∀i ∈ [p], dti = dt−1
i βlti .

8: end for
9: Obtain Ntr candidate difference vectors.

10: Use Nts samples for each candidate vector to compute
empirical risk, and return d̂ with the minimum empirical
risk and ŵn+1 = w∗

n + d̂

Algorithm 2 FOLK-DGM

1: Input: Set of change points Tc; Same parameters as Al-
gorithm 1.

2: for 1 to |Tc| do
3: for i = 1 to p do
4: Run Algorithm 1 to get the updated weight vec-

tors for all vertex i ∈ [p].
5: end for
6: Output post-change weight vector for all i ∈ [p].
7: ∀ pair (i, j), and their weight vectors wi and wj de-

clare ∃ an edge (i, j), if max(|wi, |wj |) ≥ 2κ
3

8: end for

5. THEORETICAL GUARANTEES

We will now discuss the main theoretical result.

Theorem 5.1. Let (G,N (0,Σ) be a Gaussian graphical
model on p vertices with parameters (κ, σmax, kmax,∆) as
defined above. Let Tc be the set of given change points. Then,



for any δ ∈ (0, 1), FOLk-DGM terminates with a latency of
at most

O

(
∆4σ2

max(Kmax)
2

κ4
log3

(
p× |Tc|

δ

))
with probability at least 1− δ.

Proof Sketch. We will now provide a high-level proof sketch
of the theorem. For a fixed change point and a fixed coor-
dinate, let us denote d̂ and d∗ as the estimated and true dif-
ference vector, respectively. Further let us denote ε(d̂) ≜
E[(d̂ · X − d∗ · X)2] as the expected risk of the estimated
difference vector. The proof shows that using Ntr samples
FOLk-DGM guarantees that min

n∈[Ntr]
ε(d̂n) is small. Next, this

guarantee on minimal expected risk further guarantees that
∥d̂ − d∗∥∞ is upper bounded by a small amount. Finally,
we will use the remaining samples to select a candidate dif-
ference vector with smallest empirical risk and show that ex-
pected risk of this candidate is close to the expected risk of
the candidate difference vector with minimum expected risk.
Thus Ntr + Nts samples will guarantee that d̂ is a good esti-
mate of d∗ with high probability. ■

Remark 5.2. Theorem 5.1 shows that the amount of time
one needs to wait before FOLk-DGM correctly localizes the
detected change in the underlying graph scales as
Õ
(
maxtcj∈Tc

∥∥K(j) −K(j−1)
∥∥4
1,∞

)
, where Õ suppresses

logarithmic factors. Therefore, the slighter the change, the
easier it is to localize. We suspect that the quadratic depen-
dence on the magnitude of change is not fundamental and
can be improved with a different analytical strategy; this is an
interesting avenue for future work.

Remark 5.3. Our algorithm enjoys a low runtime O(Np),
where N is the (random) latency before FOLk-DGM cor-
rectly identifies the changed weight vector. If we don’t ac-
count for parallelization (which this algorithm is highly suited
for), this implies a total runtime of O(Np2). By Theorem 5.1,
we know that with high probability this means that the run-
time of FOLk-DGM scales as O(∆4p2 log3 p). In compar-
ison, our closest competitor has a runtime of O(p3), which
stems from the fact that they employ a computationally inten-
sive procedure to do edge estimation.

6. EXPERIMENTS

We perform experiments on synthetic graphs to assess the va-
lidity of our theory. For a given number of vertices and the
allowed number of non-zero entries per row, i.e. sparsity of
the graph, we generate synthetic graphs, associated covari-
ance matrices, and generate samples from these to set up our
simulation. We report two results: (1) run-time comparison
with GLASSO [22] and CLIME [23] as the learning algo-
rithm (which is a reasonable adaptation of [7] to our setting),

Run time comparison in seconds
Dimension FOLk-DGM GLASSO [22] CLIME [23]
p = 20 70.82 233.51 245.3
p = 40 1203.5 4751.37 6406.48
p = 60 2800.31 8242.1 10328.35

Table 1: Run-time comparison for FOLk-DGM, GLASSO,
and CLIME for graphs on 20, 40, and 60 vertices.

Fig. 1: Performance comparison of recovered weight vectors
in ℓ∞ norm between MWU algorithm [4] and FOLk-DGM.
We see that for both graphs after the change occurs (4000
(resp. 6000) samples for p = 40 (resp. p = 60)), FOLk-
DGM was able to recover the correct weight vector quickly.

and (2) weight vector recovery comparison in ℓ∞-norm with
the multiplicative weights update (MWU) algorithm [4, 5].
Table 1 presents the run time comparison (with the TIC oper-
ation from MATLAB) for p = 20, 40, and 60 vertices. We
can see that FOLk-DGM performs better than both GLASSO
and CLIME. We expect that as p increases the gap between
the runtimes will increase as well. Next, in Fig. 1, for graphs
with p = 40 and p = 60, we present the performance compar-
ison between FOLk-DGM and the MWU algorithm in recov-
ering the correct weight vector in the left subfigure and right
subfigure, respectively. In order to accomplish this, we ran
these algorithms for 15 independent trials following the in-
troduction of the change. FOLk-DGM exhibits superior per-
formance in recovering the accurate weight vectors once the
change has been introduced with low latency.

7. CONCLUSION

We consider the problem of change localization in graphical
models whose underlying graph undergoes abrupt changes.
We propose a novel algorithm for this problem, dubbed
FOLk-DGM, that is online and hence memory efficient. Fur-
ther, the algorithm we propose has provably low latency for
change localization and has low computational complexity
compared to natural competitors. We supplement our theory
with experimental results that corroborate our findings. In
our future work we will integrate sequential online hypothe-
sis testing methods for change detection.
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