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Abstract—The graphical model selection problem is vital in
various applications and has garnered significant attention in
recent years. In many applications traditional approaches face
significant limitations as acquiring a large number of samples from
the entire system concurrently often proves to be prohibitively
expensive. For instance, in sensor networks, this requires expensive
synchronization procedures across the sensors. In proteomics, it
requires simultaneous tagging of a large number of proteins.
While recent approaches have been proposed for efficiently and
adaptively acquiring samples to overcome these difficulties, they
suffer from prohibitive computational costs. Our paper introduces
a novel algorithm that combines adaptive sample acquisition
with a method based on the multiplicative weights update meta-
algorithm [1]. We show that this algorithm enjoys significantly
better computational efficiency while also being efficient in sample
acquisition.

Index Terms—computational efficiency, Gaussian graphical
models, active learning

I. INTRODUCTION

Probabilistic graphical models have emerged as a powerful
framework to express and leverage relationships among entities
in large interacting systems [27]. Their applications span
various domains, including power systems [3, 6, 24], signal
processing [7], (phylo)genomics [9, 10, 5], and neuroscience
[4, 22]. In short, graphical models represent statistical
relationships using a graph. The vertices in the graph represent
random variables, and the edges in the graph represent
conditional dependence between the corresponding variables.
For a comprehensive introduction on graphical models, we
refer the reader to [27]. An important subclass of graphical
models is that of Gaussian graphical models, or Gauss Markov
random fields, which is the focus of this paper. In several
application domains we do not know the underlying graph
structure and the goal is to learn this from data — a problem
dubbed graphical model selection. This is important not only
because the model can provide a succinct representation of a
potentially complex multivariate distribution, but also because
such models can in fact reveal important relationships among
the underlying variables. This problem has been extensively
studied by several authors (see e.g., [18, 29] and references
therein).

Traditional algorithms for learning graphical models are passive
and require several measurements across all the vertices in the
graph. In many scenarios, acquiring such measurements could
be costly or impractical. For instance, in a sensor network,
obtaining samples from all sensors simultaneously requires
synchronizing measurements from each sensor. Likewise, in
many other fields such as neuroscience [13, 14, 15, 22] and
proteomics [16], obtaining (marginalized) samples from small
subsets of variables may be more feasible than capturing
complete snapshots.
A recent line of work [10, 25] has pioneered a sequential
and adaptive data acquisition strategies that addresses this
problem. However, the benefits these algorithms deliver in
data-acquisition efficiency come at the cost of prohibitvely
high computational complexity. For instance, the active
learning algorithm proposed in [28] incurs a computation
cost of O(p4) to learn a graph with p vertices. This could be
prohibitive in modern problems where the number of variables
(vertices) reach tens of thousands.

Contributions. In this paper, we propose a computationally
efficient active learning algorithm based on the multiplicative
weight update method (as pioneered in the context of graph
learning in [1, 2]) incorporated into the active learning
framework proposed in [28]. We demonstrate that the resulting
algorithm efficiently learns the graph structure with rigorous
guarantees on the required number of samples. Further, this
algorithm enjoys a lower run time complexity of the order of
p3 rather than the p4 dependency found in the algorithm by
[28], where p represents the number of vertices. On the sample
complexity front, while there is room for improvement, our
method shares similar assumptions and qualitative dependencies
with existing works (see [8] and references therein) that rely on
condition-number-type assumptions. Moreover, our algorithmic
approach can be applied directly in an online setting (even in
the active learning framework), where samples arrive one-by-
one and are processed without the need for storage before the
arrival of the next sample.

II. PRELIMINARIES

Graph theory. Let G = (V,E) be an undirected graph on p
vertices with the vertex set V and the edge set E ⊂

(
V
2

)
. We



assume that G contains no self-loops. The neighborhood of a
vertex v ∈ V is given by the set N(v) ≜ {u ∈ V : {u, v} ∈ E}
and the degree d(v) of the vertex is defined as the size of
N(v). Let’s define the closure of neighborhood N̄(v) as
N(v) ∪ {v}. Furthermore, dmax ≜ maxv∈[p]d(v) defines the
maximum degree of a graph, and let dvmax ≜ maxj∈N̄(v)d(j)
defines the maximum degree of v’s closed neighborhood.
Given a pair of vertices u, v ∈ V , a sequence of distinct
vertices v1 = u, v2, . . . , vk = v such that {vi, vi+1} ∈ E, for
1 ≤ i < k, is called a path between the vertices u, v. We let
Puv denote the set of all paths between u and v. If Puv is not
empty, we say those vertices are connected. The graph G is
said to be connected if every pair of vertices in G is connected.

Gaussian graphical models. Let X = (X1, X2, . . . , Xp) ∈ Rp

be a zero-mean Gaussian random vector with a covariance
matrix Σ ∈ Rp×p. Compactly, X ∼ N (0,Σ), where 0 is the
p-dimensional vector of all zeros. The density of X is given
by

fX(x1, x2, . . . , xp) =
1√

(2π)
p|K|

exp{−1

2
xTKx}.

The distribution of X is said to be a Gaussian graphical
model (or equivalently, Markov) with respect to a graph G
if (Σ−1)ij = 0 for all {i, j} /∈ E. K ≜ Σ−1 is called the
precision matrix of X. In other words, for any {i, j} /∈ E,
Xi and Xj are conditionally independent given all the other
coordinates of X; we refer the reader to [27] for a more
thorough exposition on graphical models. An important problem
associated with Gaussian graphical models is one of structure
learning where one aims to learn the edge set of the underlying
graph from data. Formally, given n i.i.d samples from the
distribution fX , the problem of model selection or structure
learning is to estimate the edge set E, or equivalently, the
support of the precision matrix K. For recent accounts of
results on structure learning, we refer the reader to [18] and
[29].

III. RELATED WORK

Several algorithms have been developed for the problem
of learning Gaussian graphical models using a variety of
techniques and assumptions. A comprehensive survey of all
those works is beyond the scope of this work. Interested readers
can take a look at [18] and the references therein. In scenarios
where exhaustive sampling of the graph is infeasible or
expensive, there is a recent line of work [28, 25] that considers
sequential and adaptive data acquisition strategies. However, as
mentioned above, they have prohibitively high computational
complexities of O(dmax × p4) and O(pdmax+2), respectively,
where dmax denotes the maximum degree of a graph. While
there exist several other frameworks for active/sequential data
acquisition that is non-exhaustive [11, 12, 17], these are only
applicable in the special case of tree-structured graphs.

IV. PROBLEM SETUP

In this paper, we investigate the task of computationally
efficiently recovering the graph structure of G using samples

drawn from the underlying distribution fX . Our focus is on
a scenario described in Section I, where obtaining (joint)
measurements is prohibitively expensive. Therefore, in addition
to assessing the computational runtime, we adopt the total
number of scalar samples as a key metric for evaluating our
algorithm’s performance compared to a passive counterpart (as
introduced in [28]). Notably, the total number of scalar samples
inherently accounts for the expenses associated with acquiring
synchronous samples from a substantial subset of variables. To
this end, we now define the total sample complexity, followed
by our problem statement.

Definition 1 (Total Sample Complexity). Fix δ ∈ (0, 1).
Suppose that an algorithm returns an estimate Ên given a
budget of n total scalar samples. We will say that its total
sample complexity at confidence level δ is n0 if for all n ≥ n0,
P(Ên ̸= E) ≤ 1− δ.

Problem Statement. Let (G,N (0,Σ)) be a Gaussian graphical
model on p vertices. Our goal is to construct an estimate
Ê of the edge set of the underlying graph given samples
from the distribution fX by (1) minimizing the computational
resources, as measured by time complexity, and (2) maintaining
a competitive (scaler) sample complexity.

V. ALGORITHM

In this section we present our algorithm. Before that, we will
define some quantities. We start with minimum normalized
edge strength: κ = min

(i,j)∈E

Kij√
Kii×Kjj

. This quantity appears

in our theory as more data is required (i.e., longer latency is
needed) to learn weaker edges. Next, we define an upper bound
kmax on the absolute values of the entries of K, and an upper
bound on the variance of any marginal variable.

kmax = max
(i,j)
|Kij |

σmax = max
i

Var[Xi]

We now ready present our algorithm. Recall that we adopt the
algorithm in [1] in the framework of [28]. We first start with
the framework.

The framework operates with a specified budget of scalar
samples based on a condition dependent on graph parameters
at each iteration. The algorithm relies on two subroutines,
SEQNBDSEARCH and NBDVERIFY. It begins with an empty
graph and progressively estimates neighborhoods using
SEQNBDSEARCH subroutine. The algorithm iterates until
it identifies the neighborhood of each vertex in [p]. In each
iteration, the algorithm keeps track of the vertices for which
the neighborhood has been found. If the neighbors of all
the neighbors of a vertex i are found, the algorithm does
not sample i in subsequent iterations. The SETTLED set in
Algorithm 1 keeps track of such vertices. This “settling” step
improves the total scalar sample complexity. In the following,
we briefly discuss our SEQNBDSEARCH subroutine.



Sequential Neighborhood Search subroutine, SEQNBD-
SEARCH. We start the description of SEQNBDSEARCH subrou-
tine (given in Subroutine 1) by noting an important property
of multivariate Gaussians. For any i ∈ [p], the conditional
expectation of Xi given X\i satisfies

E[Xi|X\i] =
∑
j ̸=i

−Kij

Kii
Xj .

Further, by the Gauss-Markov theorem [26], we know that Xi

conditioned on X\i is in-fact normally distributed and can be
written as

Xi =
∑
j ̸=i

wjXj + ηi, (1)

where wj = −Kij/Kii and ηi ∼ N (0, 1/Kii). Further, we
know that ηi is independent of {Xj , j ̸= i}. That is, if the
graph G has a degree of d, then we know that Xi can be
written as a noisy linear combination of X\i with at most d
non-zero coefficients. Furthermore, wi

max ≜ max
j∈N(i)

|wj | and

wmax ≜ max
i∈[p]

wi
max. While designing our algorithm we will

assume that wmax is known to us.
We will now (briefly) discuss the algorithm in [1], which
employs a straightforward majority weighted voting mechanism.
For each potential member Xj within the neighborhood of
node i, the algorithm keeps track of a weight which basically
records the approximate of each coordinate of the weight vector.
This weight vector is initialized with an uniform weight vector
and undergoes updates in a multiplicative manner, similar
to the Hedge algorithm [23]. The update in each coordinate
of a weight vector depends on how at a given iteration the
coordinate performed in predicting the response variable. After
a series of some consecutive updates, the algorithm utilizes
some additional samples to empirically assess the expected risk
(see Definition 2) for each of the candidates from the former
stage. Subsequently, it selects the candidate with the lowest
empirical risk for the final result.

Definition 2. Let ŵi ∈ Rp and wi ∈ Rp be the candidate
weight vector and true weight vector of neighborhood of
marginal variable xi, respectively. Then, the expected risk
ϵ(ŵi) is defined as

ϵ(ŵi) = EX [ŵi ·X−i −wi ·X−i]
2

.

Once a candidate weight vector is found using proper threshold,
we get a candidate neighborhood for all vertices in specific
iteration. Then, NBDVERIFY() takes a vertex i, a candidate
neighborhood N̂(i) returned by SEQNBDSEARCH, and samples
from the variables that have not been settled yet, i.e., [p] \
SETTLED. It checks whether the returned neighborhood is
indeed a potential neighborhood of i or not.

Algorithm 1 A FRAMEWORK FOR ACTIVE SEQUENTIAL
LEARNING FOR GGMS

1: Input: κ, σmax, kmax, dmax, wmax, sample complexity func-
tions s() ≜ s′() + s′′() (see [1]) and v()

2: Output: An edge set, Ê
3: Initialization: r = 1, NBDFOUND, SETTLED = ∅, N̂i ≜ ∅

for all i ∈ [p]
4: while NBDFOUND ̸= [p] or r < 2p do
5: for i ∈ NBDFOUNDc do
6: λr = r × wmax ▷ Set λ on the r−th stage.
7: N̂i, F = SEQNBDSEARCH(i, s(r), λr, {Xj

SETTLEDC}j∈{1,2,...,s(r)}, Hs)
8:
9: if NBDVERIFY(F, i, N̂i, {Xj

SETTLEDC}j∈{1,2,...,v(r)}) =
True then

10: NBDFOUND ← NBDFOUND ∪ {i}
11: end if
12: end for
13: for i ∈ NBDFOUND do
14: if N̂(i) ⊆ NBDFOUND then
15: SETTLED ← SETTLED ∪ {i}
16: end if
17: end for
18: r ← r ∗ 2
19: end while

Subroutine 1 Estimating Neighborhood of a vertex i

1: Input: Normalizing parameter Cn ≜
1√

2σmax(λr+1)log
2ps′(r)

δ

; (x̃t, ỹt) = Cn(x
t, yt), learning

rate β; λr.
2: Output: A candidate neighborhood N̂i.
3: Let |SETTLEDc| = m Initialization: v0 =
{ 1
m , 1

m , . . . , 1
m} ∈ Rm

4: for s = 1, . . . , s′(r) do
5: Compute ps = ws−1

∥ws−1∥1

6: ℓs = (1/2)(1 + (λrp
s · x̃s

−i − ys))x̃s
−i)

7: ∀i ∈ SETTLEDc, vs−1
i = vs−1

i βli

8: end for
9: for s = 1, 2, . . . , s′′(r) do

10: Compute empirical risk for all s′(r) weight vectors
using s′′(r) samples

11: end for
12: ŵ = weight vector with minimum empirical risk.

13: wi =

{
0 if wi <

2κ
3

vi otherwise
14:
15: if |supp(ŵ)| > r then
16: N̂i ≜ Top r coordinates of ŵi

17: Let F be the coordinates associated with r
18: else
19: N̂i ≜ supp(ŵ)
20: end if



Subroutine 2 Verifying Neighborhood of a vertex i

1: Input: F, i, N̂i, and SETTLED
2: Output: TRUE or FALSE.
3: if for each j ∈ [p]\F ∪SETTLED∪{i}, |ρ̂i,j\SETTLED| ≤

ζ then Return TRUE
4: else Return FALSE
5: end if

VI. THEORETICAL GUARANTEES

We will now discuss the main theoretical result. Before that
we will state a result from [28], as a Lemma which will be
instrumental for our main result on sample complexity.

Theorem 1. Let (G,N (0,Σ)) be a Gaussian graphical model
on p vertices with parameters (κ, σmax, kmax, dmax, wmax) as
defined above. Fix δ > 0. There exists a constant C > 0
such that Algorithm 1 exactly returns the structure of G with
probability at least 1− δ provided the total sample complexity
is at least

C
1

p

p∑
i=1

(dimaxwmax)
4 × σ2

maxk
2
max

κ4
p log3

(
pdmax

δ

)
(2)

Proof Sketch. Fix an arbitrary vertex i ∈ [p]. From Theorem 1
in [28] we have that in order to proof the theorem it suffices to
determine the number of samples SEQNBDSEARCH requires
to correctly recover the neighborhood of i with probability
greater than 1− δ

2pdmax
. From [1] we have that one requires

O
(

(r×wmax)
4(σmax×kmax)

2

κ4 log3(pdmax

δ )
)

samples to satisfy the
above provided the degree of i is smaller than r. We then use
the “waterfilling” style argument introduced by [28] to deduce
the final total sample complexity.

Theorem 2 (Main Theorem on Computational Complexity).
The computational complexity of Algorithm 1 is bounded from
above by dmax × p× Cseq, where Cseq is the computational
cost Subroutine 1 which is O(p2).

Proof. In the for loop of Algorithm 1, our algorithm employs
SPARSITRON to learn (or select) the neighborhood. This means
that SPARSITRON runs in parallel for vertices in NBDFOUNDc.
Note that a single instance of SPARSITRON has a time
complexity on the order of p2 in high-dimensional settings.

Advantage over Active Algorithms in terms of
Computational Complexity. Notice that [28] employs
LASSO in their proposed framework which runs in parallel
for vertices in NBDFOUNDc. It’s important to note that a
single instance of LASSO has a time complexity on the
order of O(p3) in high-dimensional settings [30], whereas our
Subroutine 1 has a complexity of O(p2).

Advantage over Passive Algorithms in terms of Sample
Complexity. The algorithm presented in [1] can be charac-
terized as a passive (albeit potentially online) variant of the
computationally efficient algorithm proposed in this paper.
The total sample complexity requirements implied in that

paper essentially has the fourth power of the ℓ1 norm of
the corresponding row of the precision matrix in the place
of 1

p

∑p
i=1

(
dimaxwmax

)4
in (2). The latter can be significantly

smaller in heterogeneous graphs whose degree distribution
varies significantly, which results in significant savings in the
total sample complexity.

VII. CONCLUSION

In this paper, we propose a computationally efficient active
learning algorithm using the framework presented in [28].
We demonstrate that our algorithm achieves an exponential
reduction in p in terms of computational complexity, where p
represents the number of vertices in a graph— which can be
very crucial in high-dimensional settings. Notably, our approach
is suitable for direct application in an online setting within
the active learning framework, handling one-by-one sample
arrivals without the need for intermediate storage.
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