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Abstract

In this review we explore the statistical and computational limits for the
Tesor SVD problem. We begin with the following paper (1) which outlines
a general framework for tensor singular value decomposition. The Tensor
SVD problem is completely characterized by this quantity called the signal
to noise ratio (SNR) and exhibits three phases, with strong SNR, they show
that the classical higher-order orthogonal iteration (HOOI) achieves the
minimax optimal rate of convergence in estimation, with weak SNR, the
information-theoretical lower bound implies that it is impossible to have
consistent estimation in general, however with moderate SNR, they show
that the non-convex maximum likelihood estimation (MLE) although having
NP-hard computational cost, it provides an optimal solution and also under
the hardness hypothesis of hypergraphic planted clique detection, there are
no polynomial time algorithms performing consistently in general.

1 Introduction

Singular value decomposition and principal component analysis has been an important tool
in multivariate and high dimensional data analysis and have been thoroughly studied in
the case of matrices, however they only capture first order interactions and ignore higher
order ones, therefore towards this end we intend to study SVD for tensors which are higher
order analogues of matrices and we wish to explore the statistical and computational
limits for tensor SVD. Tensors have been actively studied in machine learning, electrical
engineering and statistics. Some applications involving tensor data includes recommender
systems, neuroimaging analysis, computer vision, topic modeling and community detection
to name a few. A common objective here is to dig out the underlying high-order low-rank
structure, such as the singular subspaces and the whole low-rank tensors, buried in the noisy
observations. In this regard, we motivate that tensor SVD is important and therefore it is
natural to study it’s statistical properties and to complete the picture we wish to study the
computational efficiency of the algorithms.

Specifically, we are interested in a low rank tensor X ∈ Rp1×p2×p3 which are observed with
entrywise corruptions as follows:

Y = X + Z
where Z is a third order tensor with iid Gaussian entries, X is a fixed tensor whose rows and
columns lie in a low dimensional subspace, say U1, U2, U3 respectively. The goal of tensor
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SVD is to estimate U1, U2, U3 and X from noisy observation Y.

Tensor SVD is interesting than it’s two dimensional matrix counterpart for a couple of reasons.
Firstly, tensors have a more involved structure, in that they incorporate dependencies in three
or more directions while the matrices can incorporate only two. Secondly, many operations
for matrices, such as operator norm, singular value decomposition, are either not well defined
or computational NP-hard for higher order tensors. Third, high-order tensors often bring
about high dimensionality and impose computational challenges since they have significantly
more entries.

2 Tensor SVD: Methodology

In this section, we will note some basic notation, preliminaries , and important tensor algebra
concepts which will be used in this report. For a more detailed tutorial of tensor algebra,
readers are also referred to (2) . For a, b ∈ R, a ∧ b= min{a, b}, a ∧ b = max{a, b}. For
two sequences {ai}, {bi}, if there are two constants C, c > 0 such that cai ≤ bi ≤ Cai
for all i ≥ 1, we denote a � b. C, c, C0, c0 are used to denote varying generic constants.
For any matrix A ∈ Rp1×p2 and σ1 (A) ≥ . . . ,≥ σp1∧p2 (A) denotes the singular value in
non-increasing order. In this report we are interested in the smallest singular value of
A: σmin (A) = σp1∧p2 (A). In addition, the class of matrix Schatten q-norms will be used:

‖A‖q =
(∑p1∧p2

j=1 σqj (A)
)1/q

. SVDr (A) denote the leading r singular vectors of A, such that

SVDr (A) ∈ Op1,r. Furthermore, projection operator is defined as PA = A
(
ATA

)†
AT , where

(.)† represents pseudo-inverse. sinΘ distances are used to measure the difference between
singular subspaces. Specifically, for any two p× r matrices with orthonormal columns U and
Û , Θ

(
U, Û

)
, diag (arccos (σ1) , . . . , arccos (σr)) ∈ Rr×r, where σ1 ≥ . . . ,≥ σr ≥ 0 are the

singular subspaces of UT Û . The schatten q − sinΘ-norm is then defined as follows,

‖sinΘ
(
U, Û

)
‖q =

(
r∑
i=1

sinq (arccos (σi))
)1/q

=
(

r∑
i=1

(
1− σ2)q/2

)1/q

, 1 ≤ q ≤ +∞.

For any tensor X ∈ Rp1×p2×p3 , define it’s mode-1 matricization as a p1 × (p2p3) matrix
M1(X) such that

[M1(X)]i,(j−1)p3+k = Xijk.

The mode-2 and mode-3 matricizationsM2(X) ∈ Rp2×(p3p1) andM3(X) ∈ Rp3×(p1p2) are
defined similarly Tucker ranks of X = (r1, r2, r3) where ri = rank(Mi(X)). We define the
marginal multiplication as ×1 : Rp1×p2×p3 × Rr1×p1 → Rr1×p2×p3 as

X×1 Y =
p1∑
i′=1

Xi′jkYii′ .

Similarly ×2 and ×3 can be defined. Tucker rank is associated with the following decom-
position. Let U1 ∈ Op1,r1 , U2 ∈ Op2,r2 , U3 ∈ Op3,r3 be the left singular vectors ofM1(X),
M2(X),M3(X) respectively, then there exists a core tensor S ∈ Rr1×r2×r3 such that

X = S×1 U1 ×2 U2 ×3 U3
Finally, to measure the tensor estimation error, tensor Frobenius norm is defined as follows.

‖X‖F =

p1,p2,p3∑
i,j,k=1

X2
ijk

1/2

.

3 Statistical Limits: Minimax Upper and Lower Bounds

3.1 Tensor SVD: Methodology

Using tucker rank, the original tensor SVD model in Eq. (1) can be formulated as follows,
Y = X + Z = S×1 U1 ×2 U2 ×3 U3 + Z, (1)
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where {Zijk}p1,p2,p3
i,j,k=1

iid∼ N (0, σ2) is a noisy tensor, U1 ∈ Op1,r1 , U2 ∈ Op2,r2 , U3 ∈ Op3,r3 ,
and S ∈ Rr1×r2×r3 . Our goal is to estimate U1, U2, U3 from X and Y. One approach for
achieving this goal is maximum likelihood estimation (MLE) for estimating X̂mle and Ûkmle for
k = 1, 2, 3. MLE seeks for best (r1, r2, r3) approximation for Y in Frobenius norm. Though
MLE achieves optimal rate of convergence, MLE for tensor SVD problem is computationally
NP-hard and non-convex (3). Thus, MLE may not be applicable in practice.
In order to overcome the computational difficulties of MLE, a version of higher order orthog-
onal iteration (HOOI) is considered which includes three main steps: spectral initialization,
power iteration, and tensor projection. The first two steps produce optimal estimations
of U1, U2, U3, and the final step outputs an optimal estimator of the underlying low-rank
tensor X.

Spectral initialization: Since U1, U2, and U3 represents the singular subspaces ofM1 (X),
M2 (X), andM3 (X), respectively. HOOI algorithm initialize Û (0)

1 , Û
(0)
1 , Û

(0)
2 by performing

SVD on three matricized version of observed tensor Y.
Û

(0)
k = SVDrk (Mk (Y)) = the first rk left singular vectors ofMk (Y ) (2)

Power Iteration: Û
(t)
1 , Û

(t)
2 and Û (t)

3 are updated by denoising Y with Û (t−1)
1 , Û

(t−1)
2 and

Û
(t−1)
3 via a projection operation. Thus, for t = 1, 2, . . . following is computed

Û
(t)
1 = first r1 left singular vectors ofM1

(
Y×2

(
Û

(t−1)
2

)T
×3

(
Û

(t−1)
3

)T)
,

Û
(t)
2 = first r2 left singular vectors ofM2

(
Y×1

(
Û

(t)
1

)T
×3

(
Û

(t−1)
3

)T)
,

Û
(t)
3 = first r3 left singular vectors ofM3

(
Y×1

(
Û

(t)
1

)T
×3

(
Û

(t)
3

)T)
.

The iteration is stopped when no more denoising is possible or a pre-determined maximum
number of iterations is reached.

Projection: With the final estimates Û (t)
1 , Û

(t)
2 , Û

(t)
3 , S and X are estimated as follows,

Ŝ = Y×1 Û
T
1 ×2 Û

T
2 ×3 Û

T
3 , X̂ = S×1 Û1 ×2 Û2 ×3 Û3 = Y×1 PÛ1

×2 PÛ2
×3 PÛ3

. (3)

3.2 Statistical Limits: Minimax Upper and Lower Bounds

In this subsection, we look at the statistical limits for tensor SVD. Specifically, we will note
the corresponding upper bounds and lower bounds of HOOI developed by this paper. For
any X ∈ Rp1×p2×p3 , λ = mink=1,2,3,σrk (Mk (X)) as the minimal singular values of each
matricization. Suppose the signal-to-noise ratio is λ/σ = pα, where p = min{p1, p2, p3}.
Then tensor SVD problem operates in three distinct phases: α ≥ 3/4 (strong SNR), α < 1/2
(weak SNR), and 1/2 ≤ α < 3/4. (moderate SNR).
Theorem 1 (Upper bound for HOOI). Suppose there exist constants C0, c0 > 0 such that
pk ≤ c0p, ‖X‖F ≤ C0σexp (c0p), rk ≤ C0p

1/2 for p = min{p1, p2, p3}, and k = 1, 2, 3. Then
there exist absolute constants Cgap, C > 0, which do not depend on p − k, rk, λ, σ, q, such
that whenever λ/σ ≥ Cgapp3/4, after at most tmax = C

(
log
(
p
λ

)
∨ 1
)
iterations in HOOI, the

following upper bounds hold,

E−1/q
rk
‖sinΘ

(
Ûk, Uk

)
‖q ≤ C

√
pk

λ/σ
, k = 1, 2, 3, 1 ≤ q ≤ ∞ (4)

E‖X̂−X‖F ≤ Cσ2 (p1r1 + p2r2 + p3r3) , E‖X̂−X‖2
F

‖X‖2
F

≤

(
(p1 + p2 + p3)

λ2

σ2

∧ 1
)
. (5)

In other words, Theorem 1 confirms that this tensor unfolding mehcanism to apply HOOI
algorithm guarantees an upper bound on the error in estimation of low dimensional subspaces
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and original tensor. Also this paper notes that their result in Theorem 1 outperforms the
ones by sum-of-squares based convex relaxations based scheme (4), where an additional
logarithmic factor on the assumption of λ is required. One important point to note in
Theorem 1 is that the strong SNR assumption is crucial to guratee the performance of HOOI,
because λ should be at least of order p3/4 to provide a meaningful initializations.
Moreover, the achieved upper bound by the estimators obtained by MLE under the assumption
that λσ ≥ Cp1/2 are noted in (1). Furthermore, they established the lower bound for tensor
SVD considering the following class of general low-rank tensors,

Fp,r (λ) = {X ∈ Rp1×p2×p3 : rankk (X) ≤ rk, σrk (Mk (X)) ≥ λ, k = 1, 2, 3} (6)

Here p = (p1, p2p3), r = (r1, r2, r3) represent the dimension and rank triplets, λ is the
smallest non-zero singular value for each matricization of X, which essentially measures the
signal strength of the problem. The following lower bound holds over Fp,r (λ).
Theorem 2 (Lower Bound). Suppose p = min{p1, p2, p3},max{p1, p2, p3} ≤
C0p,max{1, r2, r3} ≤ C0min (r1, r2, r3) , 4r1 ≤ r2r3, 4r2 ≤ r3r1, 4r3 ≤ r1r2, 1 ≤ rk ≤ pk/3
and λ > 0, then there exists a universal constant c > 0 such that for 1 ≤ q ≤ ∞,

inf
Ũk

sup
X∈Fp,r(λ)

E−1/q
rk
‖sinΘ

(
Ũk, Uk

)
‖q ≥ c

(√
pk

λ/σ
∧ 1
)
, k = 1, 2, 3, (7)

inf
X̂

sup
X∈Fp,r(λ)

E‖X̂−X‖2
F ≥ cσ2 (p1r1 + p2r2 + p3r3) , (8)

inf
X̂

sup
X∈Fp,r(λ)

E
‖X̂−X‖2

F

‖X‖2
F

≤ c
(
p1 + p2 + p3

λ2/σ2 ∧ 1
)
. (9)

Theorem 2 implies that under the weak SNR setting the constant term dominates in Eq. (7)
and there are no consistent estimators for U1, U2, U3. On the other hand, when moderate
and strong SNR are considered,

√
pk
λσ domiates in Eq. (7) and also provides minimax lower

bounds for the estimation error.

4 Computational Limits in Moderate SNR Case

Here we look at the computational limits for Tensor SVD under the moderate SNR regime.
More specifically the paper considers the case where λ/σ = pα for 1/2 ≤ α < 3/4. It has
been shown in the paper that every polynomial time algorithm is statistically inconsistent
in estimating the singular subspaces and the core tensor based on the computational
hardness assumption. The computational lower bounds are established based on the hardness
hypothesis of hypergraphic planted clique detection.

4.1 Hypergraphic planted clique detection (HPC)

Let G = (V,E) be a graph where V and E = {(i, j) : i, j ∈ V } are the vertex and edge sets
respectively. A 3-hypergraph is a generalization of a graph where each edge can join atmost
three vertices. Given a 3-hypergraph G = (V,E) with V = |N |, then it’s adjacency tensor
A ∈ {0, 1}N×N×N is defined as

Aijk =
{

1 if (i, j, k) ∈ E
0 else (10)

The paper assumes that the random hypergraph follows the Erdös Rényi model where each
hyperedge is created with probability 1/2, we denote this model as G3(N, 1/2). Let V1 ⊂ V
and κN ≤ |V1| then we denote by G3(N,κN , 1/2) as the hypergraph where a clique of size
κN is planted in V1. The planted clique detection problem is basically given a random
hypergraph, is it possible to detect whether a clique is planted or not in the Erdös Rényi
model. More formally the HPC problem can be cast as the following detection problem.
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Definition 1. Let G be drawn from either G3(N, 1/2, κN , V1) or G3(N, 1/2, κN , V2) where
V1 = {1, 2, . . . , N/2} and V2 = {N/2 + 1, N/2 + 2, . . . , N}. The hypergraphic planted clique
detection denoted as PC3(N,κN ) refers to the following hypothesis testing problem

H0 : G ∼ G3(N, 1/2, κN , V1) v/s H1 : G ∼ G3(N, 1/2, κN , V2) (11)
Given a hypergraph sampled from either H0 or H1 with an adjacency tensor A ∈ {0, 1}N×N×N .
Let ψ(·) : {0, 1}N×N×N → {0, 1} be a binary valued function on A such that ψ(A) = 1
indicates rejection of H0. Then the risk of test ψ is defined as

RN,κN (ψ) = PH0{ψ(A) = 1}+ PH1{ψ(A) = 0} (12)

Simply put, given a random hypergraph G ∼ H0 or H1 our goal is to identify whether the
clique is planted in the first or second half of vertices.

When the hyperedges are replaced by edges the HPC problem reduces to the well studied
planted clique detection problem. The difficulty of the planted clique detection depends on
the size of the clique. The statistical limit for the clique size was shown to be κN = o(logN)
in (5), that is it is impossible to determine whether a planted clique exists or not because
the G2(N, 1/2) random graph model contains a clique of size 2 logN with high probability.
The computational limit is as follows, if κN ≥ C

√
N then a planted clique can be located

by a polynomial time algorithm (6). However when logN < κN <
√
N then it is widely

conjectured that no polynomial time exists (7). It has also been argued in (8) that the HPC
problem is atleast as difficult as the planted clique detection problem. Towards this the
paper presents the following computational hardness assumption on hypergraphic planted
clique detection.

Hypothesis H(τ): For any sequence {κN} such that lim sup
N→∞

logκN
log
√
N
≤ 1 − τ and any

sequence of polynomial time tests {ψN}

lim inf
N→∞

RN,κN (ψN ) ≥ 1
2 (13)

4.2 Computational lower bounds of Tensor SVD

To establish computational lower bounds the paper considers an average case reduction.
Average case reduction is a one shot solution once established all hardness results of the
conjectured hard problem can be inherited to the target problem. It is ideal to do average
case reduction from commonly raised conjectures like planted clique since these problems
have been widely studied and conjectured that no polynomial algorithm exists under settings.
In this case the paper considers an average case reduction to hypergraphic planted clique
detection since this has a natural tensor structure. The following theorem establishes the
computational lower bound.
Theorem 3. Suppose the hypergraphic planted clique assumption H(τ) holds for some

τ ∈ (0, 1). Then there exists absolute constants c0, c1 > 0 such that if λσ ≤ c0

[
p

3
4 (1−τ)√
log 3p

]
then

for any integers r1, r2, r3 ≥ 1 and any polynomial time estimator Û (p)
k , X̂

(p)
, the following

inequalities hold

lim inf
p→∞

sup
X∈Fp,r(λ)

E
[
‖ sin Θ(Û (p)

k , Uk)‖2
]
≥ c1, k = 1, 2, 3 (14)

lim inf
p→∞

sup
X∈Fp,r(λ)

‖X̂
(p)
−X‖2

F

‖X‖2
F

≥ c1 (15)

In other words suppose the hypergraphic planted clique hypothesis holds for some τ ∈ (0, 1),
then there exists constants such that if λσ

<∼ p 3
4 (1−τ), then any polynomial time algorithm

incurs an error which is uniformly bounded by the constants
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