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Abstract

In this review we explore the computational statistical tradeoffs in structure
learning of graphical models. Towards this end we begin with a survey of an
algorithm for learning the Ising model, namely we look at (1) which talks
about a combinatorial greedy approach which runs in Õ(n2) but requires
doubly exponential number of samples from the distribution. Concurrently
we will also look at (2) which talks about learning Gaussian graphical models
in an online set-up, the paper claims to have a low runtime compared to
other existing works however there is a complimentary paper (3) to this
which achieves nearly optimal sample complexity but runtime is large.
We ask the following question, is there a computational lower bound for
learning Gaussian graphical models with nearly optimal sample complexity.
Therefore as a first step towards formulating the tradeoff for Gaussian
graphical models we review (4) which characterizes the computational lower
bounds for inferring combinatorial structures such as clique detection and
nearest neighbor for gaussian graphical models.

1 Introduction

A typical learning algorithm has two components to it, one is the statistical component
which talks about the number of training samples the algorithm would require in order to
learn the true hypothesis with a low risk and the second is the computational aspect of
the algorithm which describes how efficient the learning algorithm is. With the advent
of complex machine learning tasks, there is a growing need for our learning algorithms
to be both statistically optimal and computationally efficient. While classic statistical
theory addresses the issue of optimality, it however largely ignores the computational aspect
of it. Recently there has been a huge interest in studying these two aspects under one
general framework, however it turns out that there exists a tension between the optimal
number of samples required and run-time of an algorithm which is generally called the
Computational-Statistical trade-off. Therefore a natural question to ask is, if whether or not
it is possible for efficient algorithms to achieve information theoretic limits, which is the
main theme of our project1. We intend to explore the following question, what is the mini-
mum computational complexity to achieve nearly optimal limits for learning graphical models.

1Code for implementations can be found at https://github.com/swish-coder/SML_Project.git|
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More broadly speaking, we live in the era of big data where complex machine learning tasks
require massive datasets which creates a fundamental problem that lies at the intersection of
computational and statistical sciences since our algorithms need to make statistical inferences
with low error but at the same time the algorithm is constrained by computational budget
such as time and space. This fundamental dichotomy arises due to the fact that computational
complexity theory views the increase in the size of the dataset as a source of complexity that
can be tamed via algorithms or hardware, however classic statistical theory views the same
as a source of simplicity because classic asymptotic results can be invoked for large samples.
However classical statistical theory gives no guidance as to how to design algorithms such
that a certain level of inferential accuracy is achieved when one imposes limited time budget
constraints. There are two main themes of research in this area, the notion of algorithmic
weakness (5) and the idea of Coresets.(6)
Roughly speaking algorithmic weakening is a procedure where as data accumulates one would
desire to switch to simpler more computationally efficient algorithmic strategies to achieve
the same desired risk. However in (6) another parameter is added ie. space s. Informally
speaking the idea of coresets is to compress a large dataset to a small one by keeping only
the most representative elements and throwing out the other points. The paper claims that
it is possible to do this without incurring much computational cost. This paper talks about
how trade-offs between time and data behave for a fixed ϵ(p) by tuning the space parameter
s.

1.1 Formally stating Time-Data Tradeoffs

To illustrate the time-data trade-off more formally, consider the class of parameter estimation
problems, we say that an inference procedure belongs to a class TD(t(p), n(p), ϵ(p)) if a
p dimensional parameter underlying the unknown population can be estimated with the
help of n iid samples with a risk of ϵ(p) by an algorithm with run-time of t(p). In this
formalism, classical estimation theory emphasizes the trade-offs between the second and
third parameters (ie. data and risk). However, the main focus of this topic is to fix ϵ(p) to a
desired level of accuracy and then investigate the trade-offs between the first two parameters
namely run-time and data size.

For the sake of qualitative comparison of inference algorithms, consider the graph in fig
(1) where the x-axis represents the sample complexity and the y-axis denotes the time
complexity. For example, procedure A achieves the minimax lower bound ie. the minimum
number of samples required to achieve the desired level of ϵ(p) with no constraints on the
run-time, determining such fundamental limits has been the focus of classical estimation
theory, however determining similar computational lower bounds corresponding to horizontal
lines in the graph has been an open problem in computational complexity theory.

2 An Efficient Algorithm for Learning Ising Models

Problem. In this section, we briefly summarize the contents of this paper (1). The author
considers the problem of learning a specific form of discrete graphical model. He considers
an Ising model on a graph G = (V,E) with |V | = p. ∂i stands for the neighbourhood of a
node i in the graph. Each of the configurations x ∈ {−1,+1}V on the nodes of the graph, is
assigned a probability according to

P(x) = exp
( ∑

{i,j}∈E

θijxixj +
∑
i∈V

θixi − Φ(θ)
)

(1)

Here Φ(θ) is a log-partition function or a normalizing constant. Therefore, the model is
parameterized by {θij}{i,j}∈E ∪ {θi}i∈V ∈ RE∪V . They assume that α ≤ |θij | ≤ β, for all
θij , for some constants α, β such that 0 < α ≤ β, and that |θi| ≤ h, for all θi, for some h.
Structure learning. A structure learning algorithm for a graphical model takes in a
set of samples X(1), . . . , X(n) sampled from the distribution and returns the graph G that
describes the structure of the model. The performance of the algorithm is characterized by
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Figure 1: The plot represents the computational statistical trade-offs for a given estimation
problem and for a desired level of accuracy. The points A-H represents different inference
procedures and the horizontal and vertical lines represents lower bounds for sample and time
complexity

the reconstruction error of the algorithm

Pθ(ϕ(X1:n) ̸= G) (2)

where ϕ(X1:n) is the graph returned by the algorithm on being given n samples X1:n.
Influence of a variable. The proposed algorithm uses a certain conditional influence of
one variable on another. For nodes u, i ∈ V , subset of nodes S ∈ V \ {i, j}, and a certain
configuration xS ∈ {−1,+1}S , the conditional influence is defined as

νu|i;xS
:= P(Xu = 1|Xi = 1, XS = xs) − P(Xu = −1|Xi = 1, XS = xs) (3)

The average version of the above quantity is defined as a weighted average

νavg
u|i;xS

:= E(λi(XS)|νu|i;XS
|). (4)

The empirical conditional influence ν̂avg
u|i;xS

is defined suitably in terms of the empirical
versions of the constituent quantities: λ̂i(XS) and ν̂u|i;xS

, which are computed from an
estimated probability distribution P̂ .
The LearnNbhd algorithm. The proposed algorithm is described. The algorithm returns
the neighbourhood of the input node u. τ is an important parameter of the algorithm that
we need to choose.

Algorithm 1 LearnNbhd(X(1), . . . , X(n), τ, u)
Pseudo-neighbourhood:

1. Let S = ∅
2. Let (i∗, η∗) = (arg max

i
ν̂u|i;xS

,max
i
ν̂u|i;xS

)

3. If η∗ ≥ τ , then add i∗ to S
4. Else go to Step 6
5. Repeat Steps 2 to 4

Pruning:
6. For each i ∈ S if ν̂u|i;xS

≤ τ remove i
7. Output S
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The algorithm starts with an empty set for the pseudo-neighbourhood for u. As long as
there exists a node with influence on i greater than or equal to τ , it keeps adding the node
that has maximum influence on u to the pseudo-neighbourhood. The authors prove that the
pseudo-neighbourhood S so constructed contains fully the neighbourhood of u if a certain
condition A(l∗, ϵ∗) is satisfied, where l∗ and ϵ∗ are parameters that depend on the τ that we
set. They then prove that the pruning stage of the algorithm removes no neighbours when
A(l∗, ϵ∗) is satisfied. This implies that the S returned is the neighbourhood of u. They prove
that for suitable values of l∗ and ϵ∗, ensured by the right choice of τ , the condition A(l∗, ϵ∗)
is met with probability P(A(l∗, ϵ∗)) > 1 − δ for arbitrarily small δ > 0 if the necessary
statistical requirement is met.
Statistical performance. If the number of samples observed n is such that

n ≥ exp{cα−c′
ec

′′d(βd+h)} · log(p
δ

) (5)

where c, c′, c′′ are numerical constants, and d is the maximum degree of the graph G,
LearnNbhd returns the correct neighbourhood for all u with probability greater that 1 − δ.
Computational performance. The runtime for computation on a graph G of p nodes is
O(p log p).

3 Information Theoretic Optimal Learning of Gaussian Graphical
Models

3.1 Setup:

Let G = (V,E) (where V = [p]) is an undirected graph on the vertex set [p] = {1, 2 . . . p}
with edge set E ⊆

(
p
2
)
. Each vertex of the graph is associated with the components of zero

mean Gaussian Random vector X ∈ Rp, covariance matrix Σ ∈ Rp×p and Inverse covariance
matrix Θ ≜ Σ−1. X is said to be Markov w.r.t to the Graph G if for any pair of vertices
i, j, {i, j} /∈ E implies Xi and Xj are conditionally independent given X[p]\{i,j}. ∀{i, j} /∈ E,
Θij = 0 and thus our goal is to learn the non-zero entries of Θ. In Gaussian graphical model
reconstruction task, we are interested in algorithms which can output an accurate estimate
Ĝ of G, i.e, P

(
G ̸= Ĝ

)
> 1 − δ for a given confidence δ > 0. This paper (3) first points out

the information-theoretic lower bound (IT) lower bound for minimum number of samples n∗

required for reconstructing a sparse graph, which is given as follows

n∗ > max
{ log

(
p−d

2
)

− 1
4κ2 ,

2
(
log

(
p
d

)
− 1

)
log

(
1 + dκ

1−κ

)
, dκ

1+(d−1)κ

}
(6)

where κ ≜ min
(ij∈E)

|Θij |√
ΘiiΘjj

and denotes the minimum normalized edge strength.

Note that bound in eq. (6) depends only on the parameters of the underlying graph, not on
any additional assumptions. Then they proposed two algorithms named Sparse Least-squares
Inverse Covariance Estimator (Slice) and Degree- constrained Inverse Covariance Estimator
(Dice), and their sample complexity scales like d + 32

κ2 log
(

4pd+1

δ

)
and 2d + 192

κ2 d log p +
64
κ2 log

( 4d
δ

)
respectively. Both Dice and Slice consist of three steps and a brief overview of

the steps are given as follows.
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3.2 DICE

3.2.1 Estimating conditional variances:

In this step, Dice obtains an estimate of the conditional variances Θ̂ii of each variable i ∈ [p]
conditioned on all the neighbors of i by solving the following optimization problem

1
Θ̂ii

= min
β̂∈Rp−1

Li

(
β̂, Σ̂

)
= 1
n

n∑
k=1

xki +
∑
j ̸=i

βijxj

2

, such that ||β̂||0 ≤ d (7)

3.2.2 Iterative Support Testing:

Fix i ∈ V and this subroutine will test all obtained candidate neighborhoods for i. Consider
a candidate neighborhood B1 ⊂ V \{i} with |B1| = d. The objective of this subroutine is to
obtain the true neighborhood Bi ⊆ B1. This testing proceeds as follows.

1. Fix some adversarial neighborhoods B2 ⊂ V \{{i} ∪B1} with cardinality d.
2. Let BiBj = Bi ∪ Bj and compute regression coefficients β̂iB1B2 =

−Σ̂−1
B1B2,B1B2

Σ̂−1
B1B2,i

and B1 is a neighborhood if ∀B2,

max
j∈B2

κ̂ij ≜ |β̂ij |

√√√√ Θ̂ii

Θ̂ij

<
κ

2 (8)

There are two key things to notice in eq. (8)
• Assume that β̂iB1B2 is correct, then ∀B2 and ∀j ∈ B2, estimate κ̂ij ≈ κij (where
κij=0 )

• If ∃j such that j ∈ Bi\B1, then condition in eq. (8) will fail make B1 fail the
criterion.

3.2.3 Eliminate non-edges:

Given that we have a candidate neighborhood B1 such that |B1| = d and Bi ⊆ B1, this
subroutine will eliminate all extra edges from B1 by computing the estimated edge strength
κ̂ij ∀j ∈ B1 and discarding any j ∈ B1 as an edge if κ̂ij < κ

2

3.3 SLICE

Their second proposed algorithm named Slice offers better computational complexity by
trading off in sample complexity which exploits mixed integer programming formulation in
Phase 3 from Dice. Key steps of slice are as follows

3.3.1 Least Squares with l0- constraint

β̂i = min
β̂∈Rp−1

Li

(
β̂, Σ̂

)
= 1
n

n∑
k=1

xki +
∑
j ̸=i

βijxj

2

, s.t ||β̂||0 ≤ d (9)

By comparing eq. (7) and eq. (9) we can see that the purpose of slice is to estimate
regression coefficients rather than estimating the conditional variances as it was in dice.

3.3.2 Estimate the support

After estimating β̂i ∀i ∈ V , the estimate of edge-set Ê can be obtained by following
thresholding procedure

Ê =
{

(i, j) ∈ V × V :
√

|β̂ij × β̂ji| >
κ

2

}
(10)

5



3.3.3 Implementation as a mixed integer quadratic program

In order to prevent an exhaustive search over all possible size d neighborhood of each vertex
i ∈ V , when d is big enough, this phase of slice algorithm formulates the problem as a
significantly faster mixed integer quadratic program. In the following formulation L and U
denote upper and lower bounds on the regression. variables.

min
β̂∈Rp−1

βTi Σ̂īi + 2Σ̂īi + Σ̂ii (11a)

such that sijL ≤ βij < sijU, ∀j ̸= i (11b)∑
j ̸=i sij = d (11c)

sij ∈ {0, 1} ∀j ̸= i (11d)

3.4 Condition Number dependence

One important aspect of this paper is that their proposed algorithms are not sensitive to
condition number parameter absent in IT lower bound (eq. (6)). They illustrated this fact
by sketching a sequence of matrices which has a growing condition number whereas sample
complexity of Dice and Slice are not scaled accordingly.

4 Learning Gaussian Graphical Models via Multiplicative Weights

Consider the preceding setup for GGM reconstruction. We will now provide a brief overview
of the online algorithm proposed in (2). Let Xi and X ī denote ith coordinate and all other
coordinates except i of X respectively.We can express E [Xi|X ī] by a linear combination of
measurements from other p− 1 nodes as follows,

E [Xi|X ī] =
∑
j ̸=i

(
−Θij

Θii

)
Xj = wi ·X ī

Where wi ∈ Rp−1 represents corresponding weights of samples from other p − 1 nodes
estimate Xi. In what follows is a brief listing of the core parts the online algorithm. For a
detailed description of different parameters see the paper.

Algorithm 2 Learning weight vector for a node i

1: Input: N samples of X, v(0) as
(

1
p ,

1
p , . . . ,

1
p

)
∈ Rn, learning rate, β distribution vector

2: ρ, λi =
∑
i̸=j

∣∣ θij

θii

∣∣ and max
i
λi ≤ λ.

3: Output: A “good” approximation v∗ of wi.
4: for n = 1 to N do
5: ρ(n) = v(n−1)

||v(n)||1
// v(n−1), ρ(n) ∈ Rn

6: l(n) = (1/2)(1 + (λρ(n) · x(n) − y(n))︸ ︷︷ ︸
prediction error

x(n))

7: ∀i ∈ [p], v(n)
i = v

(n−1)
i βl

(n)
i

8: end for
9: Get N candidate weight vectors.

10: Further use M samples to see which candidate vector exhibits smallest empirical risk.
11: Return v∗

i = λρn, where n denotes the candidate weight vector with smallest empirical
risk.

Although the algorithm presented in (2) is the adoption of Sparsitron algorithm proposed
in (7) for Gaussian case, (2) tackle some challenges due to the continuous and unbounded
nature of the problem which prohibits the use of several parts of the analysis in (7). Their
sample complexity scales like O

((
λ
κ

)4 log3 p
δ

)
6



5 Computational-Statistical trade-offs in Combinatorial Inference

As a first step towards formulating the computational-statistical trade-offs for structure
learning in undirected gaussian graphical models which has not been addressed to the best of
our knowledge we take a look at (4) which talks about trade-offs for combinatorial inference
in gaussian graphical models. The fundamental question is to quantify the minimum
computational complexity to achieve information theoretic limits in inferring combinatorial
structures like clique detection, nearest neighbor graph and distinguishing graphs with
large clique against small clique using an oracle computational model. More precisely, the
paper defines two topological properties called the weak and strong edge densities, µ and µ′

respectively which characterizes the trade-off,in particular their main result shows that if µ
and µ′ are of different orders then the information theoretic limit is not achievable by any
tractable algorithm.

Let X = (X1, . . . , Xd)T ∈ Rd be a d-dimensional random vector which follows a multivariate
normal distribution N (0,Θ−1), let G(Θ) = (E, V ) be the corresponding undirected graphical
model. Given n independent observations x1, . . . , xn we are interested in the hypothesis
testing problem

H0 : G ∈ G0 versus H1 : G ∈ G1

where G0 and G1 are two disjoints sets of graphs and graphs in G1 share the combinatorial
structure of interest. We will now look at a few definition and state the main result.
Definition 5.1. Let M be an oracle computational model, an algorithm A is defined as
a tuple M(Q, T, qinit, δt∈[T ]), where Q is the query space, T is the maximum number of
rounds the algorithm is allowed to query the oracle, qinit is the initial query and δt decides
the (t+ 1)th query based on the previois queries and their returns, in addition if δt returns
HALT then the algorithm terminates. Let QA be the set of all queries that A queries the
oracle. We define the computational complexity as |QA|
Definition 5.2. Let C0 and C1 be the set of precision matrices corresponding to G(Θ) in
G0 and G1, we define the minimax risk of testing C0 against C1 under M with a a statistical
query oracle r as

Rn(C0, C1,A, r) = inf
ψ∈H(A,r)

[
sup
θ∈C0

Pθ(ψ = 1) + sup
θ∈C1

Pθ(ψ = 0)
]

(12)

where H(A, r) is the set of all test functions.
Definition 5.3. If there exists an oracle r such that

lim inf
n→∞

Rn(C0, C1,A, r) = 1 (13)

then any hypothesis test computed by an algorithm based on at most T queries under the
computational model is asymptotically powerless.
Definition 5.4 (Null alternative separator). Let G0 = (V,E0) ∈ G0 be some graph under
the null hypothesis. We call a collection of edge sets E a null alternative separator with null
base G0 if for all edge sets S ∈ E , we have S ∩ E0 = ∅ and (V,E0 ∪ S) ∈ G1

The fundamental hardness of the testing problem depends on the parameter spaces {Θ0}
and {ΘS}S∈E , thus the computational hardness of the problem depends on the structure
of E . The paper defines two quantities namely the weak edge density and vertex cut ratio
which captures the notion of computational hardness.
Definition 5.5 (Weak edge density). For a null alternative separator E , we define it’s weak
edge density as

µ = max
S,S′∈E

|S ∩ S′|
|V (S ∩ S′)|2 (14)

Intuitively, the weak edge density measures the concentration of critical edges that changes
a graph from G0 to G1. Therefore larger the value of µ easier it is to distinguish between G0
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and G1. Similarly, we define the notion of strong edge density whose role would be evident
in the main result. It is defined as

µ′ = max
S,S′∈E

|S ∩ S′|
|V (S ∩ S′)| (15)

It’s called the strong edge density since µ′ always dominates µ.
Theorem 5.1. Suppose that we have a null alternative separator E with the null base G0.
Under the oracle computational model M, if we require the number of queries T ≤ dν for
some constant ν > 0, then for some sufficiently small constants κ1 and κ2 we have

• Information theoretic bound: If θ ≤ κ1/
√
µ′n, any hypothesis test is asymptoti-

cally powerless.

• Computationally-Efficient bound: If θ ≤ κ2/
√
µn, any hypothesis test computed

by a polynomial time algorithm is asymptotically powerless

Therefore, computational-statistical trade-offs appear when µ << µ′.
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