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1 Introduction

Probabilistic graphical models have emerged as a powerful and flexible formalism for express-
ing and leveraging the relationships among entities in large interacting systems. They have
come to find applications in a wide range of domains such as statistical physics and computa-
tional biology to natural language processing and computer vision. One important problem
associated with graphical models is that of learning the structure of dependencies between
the variables described by such a model from data. This is useful as it not only allows
a succinct representation of a potentially complex multivariate distribution, but it might
in fact reveal fundamental relationships among the underlying variables. This problem of
learning the structure associated to a graphical model has a long and prodigious history. In
this project, I will first give a brief review of two papers ([CS20] and [MVL20]) on structure
learning of Gaussian graphical models (introduced later). Then, I will point out a different
toy algorithm motivated from [CS20] which can be used to quickly capture the changes in
the underlying models. We first start with the typical structure learning problem setup for
(Gaussian) graphical models. In this report, vectors will be denoted as both X and X.

2 Problem Setup

Let G = (V,E) (where V = [p]) is an undirected graph on the vertex set [p] = {1, 2 . . . p}
with edge set E ⊆

(
p
2

)
. Each vertex of the graph is associated with the components of zero

mean Gaussian Random vector X ∈ Rp, covariance matrix Σ ∈ Rp×p and Inverse covariance
matrix Θ ≜ Σ−1. X is said to be Markov w.r.t to the graph G if for any pair of vertices
i, j, {i, j} /∈ E implies Xi and Xj are conditionally independent given X[p]\{i,j}. ∀{i, j} /∈ E,
Θij = 0 and thus our goal is to learn the non-zero entries of Θ. In Gaussian graphical model
reconstruction task, we are interested in algorithms which can output an accurate estimate

Ĝ of G, i.e, P
(
G ̸= Ĝ

)
> 1− δ for a given confidence δ > 0.
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3 Information Theoretic Optimal Learning of Gaussian

Graphical Models

This paper [MVL20] first points out the information-theoretic lower bound (IT) lower bound
for minimum number of samples n∗ required for reconstructing a sparse graph, which is given
as follows

n∗ > max

{
log
(
p−d
2

)
− 1

4κ2
,

2
(
log
(
p
d

)
− 1
)

log
(
1 + dκ

1−κ

)
, dκ
1+(d−1)κ

}
(1)

where κ ≜ min
(ij∈E)

|Θij |√
ΘiiΘjj

and denotes the minimum normalized edge strength.

Note that bound in eq. (1) depends only on the parameters of the underlying graph,
not on any additional assumptions. Then they proposed two algorithms named Sparse
Least-squares Inverse Covariance Estimator (Slice) and Degree- constrained Inverse Co-

variance Estimator (Dice), and their sample complexity scales like d + 32
κ2 log

(
4pd+1

δ

)
and

2d + 192
κ2 d log p +

64
κ2 log

(
4d
δ

)
respectively. Both Dice and Slice consist of three steps and a

brief overview of the steps are given as follows.

3.1 DICE

3.1.1 Estimating conditional variances:

In this step, Dice obtains an estimate of the conditional variances Θ̂ii of each variable i ∈ [p]
conditioned on all the neighbors of i by solving the following optimization problem

1

Θ̂ii

= min
β̂∈Rp−1

Li

(
β̂, Σ̂

)
=

1

n

n∑
k=1

(
xk
i +

∑
j ̸=i

βijxj

)2

, such that ||β̂||0 ≤ d (2)

3.1.2 Iterative Support Testing:

Fix i ∈ V and this subroutine will test all obtained candidate neighborhoods for i. Consider
a candidate neighborhood B1 ⊂ V \{i} with |B1| = d. The objective of this subroutine is to
obtain the true neighborhood Bi ⊆ B1. This testing proceeds as follows.

1. Fix some adversarial neighborhoods B2 ⊂ V \{{i} ∪B1} with cardinality d.

2. Let BiBj = Bi ∪ Bj and compute regression coefficients β̂iB1B2 = −Σ̂−1
B1B2,B1B2

Σ̂−1
B1B2,i

and B1 is a neighborhood if ∀B2,

max
j∈B2

κ̂ij ≜ |β̂ij|

√√√√ Θ̂ii

Θ̂ij

<
κ

2
(3)

There are two key things to notice in eq. (3)

• Assume that β̂iB1B2 is correct, then ∀B2 and ∀j ∈ B2, estimate κ̂ij ≈ κij (where
κij=0 )
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• If ∃j such that j ∈ Bi\B1, then condition in eq. (3) will fail make B1 fail the
criterion.

3.1.3 Eliminate non-edges:

Given that we have a candidate neighborhood B1 such that |B1| = d and Bi ⊆ B1, this
subroutine will eliminate all extra edges from B1 by computing the estimated edge strength
κ̂ij ∀j ∈ B1 and discarding any j ∈ B1 as an edge if κ̂ij <

κ
2

3.2 SLICE

Their second proposed algorithm named Slice offers better computational complexity by
trading off in sample complexity which exploits mixed integer programming formulation in
Phase 3 from Dice. Key steps of slice are as follows

3.2.1 Least Squares with l0- constraint

β̂i = min
β̂∈Rp−1

Li

(
β̂, Σ̂

)
=

1

n

n∑
k=1

(
xk
i +

∑
j ̸=i

βijxj

)2

, s.t ||β̂||0 ≤ d (4)

By comparing eq. (2) and eq. (4) we can see that the purpose of slice is to estimate
regression coefficients rather than estimating the conditional variances as it was in dice.

3.2.2 Estimate the support

After estimating β̂i ∀i ∈ V , the estimate of edge-set Ê can be obtained by following thresh-
olding procedure

Ê =

{
(i, j) ∈ V × V :

√
|β̂ij × β̂ji| >

κ

2

}
(5)

3.2.3 Implementation as a mixed integer quadratic program

In order to prevent an exhaustive search over all possible size d neighborhood of each vertex
i ∈ V , when d is big enough, this phase of slice algorithm formulates the problem as a
significantly faster mixed integer quadratic program. In the following formulation L and U
denote upper and lower bounds on the regression. variables.

min
β̂∈Rp−1

βT
i Σ̂īi + 2Σ̂īi + Σ̂ii (6a)

such that sijL ≤ βij < sijU, ∀j ̸= i (6b)∑
j ̸=i sij = d (6c)

sij ∈ {0, 1} ∀j ̸= i (6d)
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3.3 Condition Number dependence

One important aspect of this paper is that their proposed algorithms are not sensitive to
condition number parameter absent in IT lower bound (eq. (1)). They illustrated this fact
by sketching a sequence of matrices which has a growing condition number whereas sample
complexity of Dice and Slice are not scaled accordingly.

4 Learning Gaussian Graphical Models via Multiplica-

tive Weights

Consider the preceding setup for GGM reconstruction, we will now provide a brief overview
of the online algorithm proposed in [CS20]. Let Xi and X ī denote i

th coordinate and all other
coordinates except i of X respectively.We can express E [Xi|X ī] by a linear combination of
measurements from other p− 1 nodes as follows,

E [Xi|X ī] =
∑
j ̸=i

(
−Θij

Θii

)
Xj = wi ·X ī

Where wi ∈ Rp−1 represents corresponding weights of samples from other p−1 nodes estimate
Xi. In what follows is a brief listing of the core parts the online algorithm. For a detailed
description of different parameters see the paper.

Algorithm 1 Learning weight vector for a node i

1: Input: N samples of X, v(0) as
(

1
p
, 1
p
, . . . , 1

p

)
∈ Rn, learning rate, β distribution vector

2: ρ, λi =
∑
i ̸=j

∣∣ θij
θii

∣∣ and max
i

λi ≤ λ.

3: Output: A “good” approximation v∗ of wi.
4: for n = 1 to N do
5: ρ(n) = v(n−1)

||v(n)||1
// v(n−1), ρ(n) ∈ Rn

6: l(n) = (1/2)(1 + (λρ(n) · x(n) − y(n))︸ ︷︷ ︸
prediction error

x(n))

7: ∀i ∈ [p], v
(n)
i = v

(n−1)
i βl

(n)
i

8: end for
9: Get N candidate weight vectors.

10: Further use M samples to see which candidate vector exhibits smallest empirical risk.
11: Return v∗i = λρn, where n denotes the candidate weight vector with smallest empirical

risk.

Although the algorithm presented in [CS20] is the adoption of Sparsitron algorithm pro-
posed in [KM17] for Gaussian case, [CS20] tackle some challenges due to the continuous and
unbounded nature of the problem which prohibits the use of several parts of the analysis in

[KM17]. Their sample complexity scales like O
((

λ
κ

)4
log3 p

δ

)
.
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